
living with “dirty” data

Mike McKerns	

Caltech!

(while avoiding exascale “garbage in, garbage out”)!

ExMatEx ExMat Ex
Extreme Materials at Extreme Scale

there will be errors, do we need to care?

•  Keynote: “Failure, Resilience, Opportunity and Innovation”
 John Daly, Department of Defense

•  How will HPC continue to provide insight into the nation’s most
important and challenging problems using computers that fail
regularly and even give wrong answers? Resilience is not about
making all of the errors go away. On the contrary, systems
intended to run without errors often fail in the most catastrophic
ways. Resilience is about understanding how systems fail and
creating applications that can fail their way to success.

•  …so, should we really care about failure?
•  Is there an algorithm that can tell us whether we should care?
•  Can we use this algorithm to redesign our calculations so that

we needn’t worry about failure?

the challenge: resilience at the exascale

•  It’s expected failure will occur as a part of normal operation.
–  I’ll focus on “bad data”, but in many cases I’ll generalize to “failure”

•  What algorithmic changes can enable resilience at exascale?
–  conjecture: an exascale system should be driven by statistics,

and utilize redundancy where failure is expected to have a sizable impact
–  robustness against failure over the need to restart
–  programming models for dynamic flexibility in execution
–  asynchronous parallel and stochastic operation
–  integrated statistical forecasting and metric evaluation

•  How can statistics play a huge role in resiliency at exascale?
–  identifying and filtering out errors (e.g. outliers that point to ‘bad data’)
–  statistical sampling (for known distributions)
–  statistical estimators/validators for system/algorithm behavior
–  integrated driver for algorithmic robustness against failure

resilience and the state machine

•  conjecture: if everything, including data, has it’s state captured
by the system’s state machine, any form of failure can be
mitigated (or at least recovered from).
–  all state is captured in objects, including data
–  programming models are used to provide flexible dynamic execution

•  This design is used by several Tier-1 banks for their global
algorithmic trading and market risk systems.
–  all calculations are managed on an abstract syntactic graph
–  all state is captured in objects, and must reside in nodes on the graph
–  the graph itself is an object, and can be stored in a database

•  Both the data and the code are treated as objects which are
versioned & stored in (memory) instances of NoSQL databases
–  previously, data was stored on disk accessed by M’s of processors!

goal: know with certainty what you have

•  …TBA…

data is versioned
code is versioned
nothing is deleted

go “back in time” and exactly
reproduce any calculation, and
validate against stored results

regulatory requirement:
financial instruments must
be globally unique (across
every database and every
trader’s laptop)

6

data history managed through revisioning

Two clients each get copies of revision 10 of '/data'

7

data history managed through revisioning

Each client does a calculation that modifies '/data'

8

data history managed through revisioning

The first client writes '/data' back to the database.
The revision number is increased to 11.

9

data history managed through revisioning

The second client attempts to write '/data'. The
revision numbers don't agree, so the write fails.

a merge is needed

10

global data synchronization is satellite-hub

databases can be unioned
by a path-order mechanism

databases are synchronized
by a daemon process

if data is “corrupted” in one
location, sync will detect it

klepto: asynchronous sharing of state

•  klepto features:
–  unified API for caching and archiving
–  cache-to-archive interaction strategies

–  lru, lfu, mru, random_replace, …

–  backends: memory, file, memmap, directory, database, db table
–  unified API for key encoding / serialization / hashing / encryption

–  extensible: leverage pickle, json, dill, codecs, md5, … you pick

–  ‘ignore’ selected arguments (partial arg caching)
–  cache interpolation by rounding
–  can leverage SQLAlchemy, numpy internals

•  planned and in-progress:
–  leverage: hdf, redis, shared memory
–  more interpolation algorithms

–  kriging, etc…

–  asynchronous cache-to-archive updates
 ExMatEx ExMat Ex

Extreme Materials at Extreme Scale

F(x)

F(x)

DB

local memory cache

central archive

the time-series problem: market risk

n ≤ N
 t ≈ 0 t

•  use Monte-Carlo (MC) to calculate
risk envelope (var and hedge)

•  model built from Bayesian inference
on existing market data

•  the impact of bad data is likely small
–  mitigated by N-parallel MC runs
–  mitigated by sampling in interpolation
–  mitigated by using HPC to shrink t

•  big banks w/ large HPC often perform simple linear statistics
–  speed trumps accuracy

non-accumulating iterative problems

•  time-series problems map well to data stream analytics

•  robust statistics can be applied “in streaming mode”, as results
are generated (as opposed to post-mortem)
–  O(N) calculations to produce/process data
–  O(N) calculations required to identify and reject outliers in data
–  calculation of approximate sampling statistics (for known distributions)
–  fast and robust statistics is an area of active research

•  failure is generally not catastrophic
–  each time step is non-accumulating
–  the impact of bad data is often contained to a single calculation
–  the more data/updates, the more resilient

•  is it a resilience strategy to convert algorithms to this type?
–  asynchronous parallel: speed + resiliency

accumulating iterative problems

•  time-evolution is not as well suited for data streaming analytics

•  robust statistics can be applied “in streaming mode”
–  tend to be larger than O(N)
–  tend to be approximate and fragile
–  also an area of active research

•  failure may be catastrophic
–  each time step is accumulating, so errors are generally compounded
–  the impact of bad data is rarely contained to a single calculation
–  may be mitigated by adding redundancy and randomness
–  may be mitigated by validation against expected model error

•  materials modeling is generally a time-evolution problem
–  does that mean we cannot convert to robust asynchronous parallel?

time-evolution: a leading question

…	

…	
 	
 	

•  global optimization underlies almost every flavor of UQ, however is
arguably one of the most limiting factors in predictive science – primarily
because optimization algorithms are iterative (i.e. “serial”).

•  can we rethink optimization (and statistics/UQ) to be embarrassingly

parallel?
or	
 maybe	
 be*er…	

•  if you had a global optimizer and exascale computing resources, would
you pose statistics/UQ questions differently?

	

	

	

•  I	
 have	
 built	
 an	
 op5miza5on	
 framework	
 that	
 is	
 designed	
 to	
 address	
 large-­‐
dimensional	
 and	
 highly-­‐constrained	
 non-­‐convex	
 global	
 op5miza5on	
 and	
 rare-­‐
event	
 UQ	
 problems.	
 	
 A	
 key	
 aspect	
 of	
 how	
 it	
 works	
 is	
 that	
 an	
 op5mizer	
 can	

dynamically	
 spawn	
 a	
 hierarchy	
 of	
 op5mizers	
 to	
 address	
 por5ons	
 of	
 the	

problem,	
 and	
 those	
 nested	
 op5mizers	
 can	
 also	
 do	
 the	
 same,	
 and	
 so	
 on.	

•  One	
 caveat	
 is	
 that	
 each	
 nested	
 op5miza5on	
 must	
 not	
 fail	
 to	
 find	
 it’s	
 target.	

mystic: scalable constraints operators

box
constraints

penalty
functions

 from mystic.math.measures import mean, spread!
 from mystic.constraints import with_penalty, with_mean!
 from mystic.constraints import quadratic_equality!
!
 # build a penalty function!
 @with_penalty(quadratic_equality, kwds={'target':5.0})!
 def penalty(x, target):!
 return mean(x) - target!
!
 # define an objective!
 def cost(x):!
 return abs(sum(x) - 5.0)!
!
 # solve using a penalty!
 from mystic.solvers import fmin!
 x = array([1,2,3,4,5])!
 y = fmin(cost, x, penalty=penalty)!
!
!
!
!
 # build a functional constraint!
 @with_mean(5.0)!
 def constraint(x):!
 return x!
!
 # solve using constraints!
 y = fmin(cost, x, constraint=constraint)!

explicit and can be parallelized,
can strongly reduce search space

fast, but implicit, inaccurate, and
can add spurious features

Traditional constraints methods
apply a penalty to the cost
when the constraints are
violated

data point
& functional
constraints

operators that commute
can be spawned in parallel

Decoupling constraints often
creates a central
convex optimization

pathos: programming model abstractions

 # select and configure a basic monitor!
 from pathos import Monitor!
 evalmon = Monitor()!
!
 # apply to a user-provided function!
 @monitored(evalmon)!
 def identify(x)!
 return x!
!
 # select and configure a parallel map!
 from pathos.maps import SlurmMpirunPool!
 mpi_map = SlurmMpirunPool(8)!
!
 # evaluate the model in parallel!
 y = mpi_map(identify, range(16))!
!
!
!
!
!
!
 # select and configure a parallel map!
 from pathos.maps import IpcPool!
 ipc_map = IpcPool(2, servers=['foo.caltech.edu'])!
!
 # evaluate the model in parallel!
 y = ipc_map(identify, range(16))!

map provides batch
processing on an potentially
distributed or parallel service

typically 80-90% as efficient as
hand-tuned parallel code

•  rapid exploration of system design:
–  communication patterns
–  parallelism hierarchies
–  memory hierarchies
–  synchronization and scheduling
–  resilience strategies
–  system efficiency

Reader

Writer

Simulator

Reducer

Simulator Simulator Simulator

Mapper

asynchronous map: speed and robustness

•  blocking map is fragile and prone to failure
•  …so decouple the launch and termination of parallel map

•  utilize a stop condition for when results are “good enough”
–  simple case: 75% of the results have returned
–  better case: use statistics to determine if “good enough”

•  note: we can still collect and archive all launched runs
–  blocking time to the next iteration can be greatly reduced
–  a “condition” removes requirement all runs complete

N

t

reduces	
 5me	
 per	
 itera5on	

without	
 loss	
 in	
 accuracy	
 	
 	

ExMatEx ExMat Ex
Extreme Materials at Extreme Scale

75%
“statistics”
P[X ≤ a] ≥ e

scalability with asynchronous parallelism

•  leverage asynchronous parallel computing in optimization
–  optimizers have and can save state (to file or database archive), have

streaming diagnostic monitors
–  optimizers are serializable and asynchronous (thus are non-blocking

parallel distributed)
–  has slots for parallel maps on the objective, constraints, iteration, and the

solver itself (for parallel ensemble and nested solvers)
–  has memory caching and transparent archiving
–  dynamic optimization strategies, compound termination conditions,

speed-up with dimensional collapse
–  optimizers are event-based, can react to changing constraints & objective

•  constraints operators enable scalable nonlinear optimization
–  apply constraints as an "operator"
–  almost embarrassingly parallel
–  constraints solvers are dynamically launched by a governing optimizer
–  has been used to solve problems with 1000's of nonlinear constraints

operators that commute
can be spawned in parallel explicit and can be parallelized,

can strongly reduce search space

mystic: massively-parallel optimizers

 # the function to be minimized and the bounds!
 from mystic.models import rosen as my_model!
 lb = [0.0, 0.0, 0.0]; ub = [2.0, 2.0, 2.0]!
!
 # get monitor and termination condition objects!
 from mystic.monitors import LoggingMonitor!
 stepmon = LoggingMonitor(1, 'log.txt')!
 from mystic.termination import ChangeOverGeneration!
 COG = ChangeOverGeneration()!
!
 # select the parallel launch configuration!
 from pyina.launchers import TorqueMpi!
 my_map = TorqueMpi('25:ppn=8').map!
!
 # instantiate and configure the nested solver!
 from mystic.solvers import PowellDirectionalSolver!
 my_solver = PowellDirectionalSolver(len(lb))!
 my_solver.SetStrictRanges(lb, ub)!
 my_solver.SetEvaluationLimits(1000)!
!
 # instantiate and configure the outer solver!
 from mystic.solvers import BuckshotSolver!
 solver = BuckshotSolver(len(lb), 200)!
 solver.SetRandomInitialPoints(lb, ub)!
 solver.SetGenerationMonitor(stepmon)!
 solver.SetNestedSolver(my_solver)!
 solver.SetSolverMap(my_map)!
 solver.Solve(my_model, COG)!
 # obtain the solution!
 solution = solver.bestSolution

•  What happens when we use
mystic to address questions in
statistical science?

–  statistics as global optimizations
–  optimization over all possible

scenarios (or priors), using statistical
constraints

–  represent probability distribution as
a basis set

–  apply constraints as “operators” that
restrict space

–  operators can spawn nested
optimizations to solve constraints

with	
 enough	
 op5mizers,	
 we	
 get	
 a	
 global	
 map	

of	
 the	
 poten5al	
 surface	
 in	
 a	
 single	
 shot	

op5mizers	
 can	
 be	
 set	
 to	
 search	
 for	
 minima,	

maxima,	
 saddle,	
 and	
 other	
 inflec5on	
 points	
 	

example: degeneracy in structure solution

§  …	

§  …	

…	

• Solving a 1D proxy problem with multiple degenerate minima, finding the number of such minima.
• Constructed from 3 sets of Gaussians which may be mixed with different weights.
– Step 1: pick a point on the ternary source diagram
– Step 2: find the degeneracy for that version of the target function
– Step 3: use downhill method to choose a new point. Goal is to find point of lowest degeneracy
– Step 4: repeat many times, try different highly parallel searches
• Problem is hard for solvers because there are large flat regions of the surface.

benchmark with ensemble solvers
…	

Simplex:	
 1000s	

(100	
 points	
 	
 at	

10s	
 /point)	

Buckshot	

Simplex:	
 200s	

for	
 batch	
 of	

100	
 solvers	
 on	

512	
 cores	

Powell:	
 500s	

(100	
 points	
 	
 at	

5s	
 /point)	

Buckshot	
 Powell:	

68s	
 for	
 batch	
 of	

100	
 solvers	
 on	

512	
 cores	
 	

Diff	
 Ev:	
 9500s	

(100	
 points	
 	
 at	

95s	
 /point)	
 	

popula5on	
 of	

40	

Single	
 Buckshot	
 Powell	

search	
 for	
 all	
 minima	

example: ensemble global search
…	

Six-­‐itera5on	
 Buckshot	

Powell	
 search	
 for	
 all	

minima.	

Two-­‐itera5on	
 Buckshot	

Powell	
 search	
 for	
 all	
 minima.	

	

Interpolate	
 points	
 to	
 build	
 a	

surrogate.	

“cache”	
 in	
 this	
 case	
 is	
 an	
 abstrac5on	

on	
 storage.	
 “load”	
 is	
 local	
 memory	

cache,	
 while	
 “hit”	
 is	
 an	
 archive	
 hit.	

“miss”	
 is	
 a	
 new	
 point.	
 	
 Results	
 shown	

are	
 for	
 when	
 configured	
 for	
 direct	

connec5vity	
 with	
 archival	
 database.	

example: building the optimal surrogate

Can	
 we	
 build	
 a	
 surrogate	
 for	
 a	
 n-­‐dimensional	

surface,	
 where	
 we	
 can	
 op5mally	
 replicate	
 the	

original	
 func5on’s	
 behavior?	

You	
 can	
 be	
 smart	
 about	
 it,	
 or	
 use	

brute	
 force.	
 	
 Let’s	
 use	
 brute	
 force.	

example: building the optimal surrogate

Standard	
 solu5on:	
 pick	
 a	
 grid	

density,	
 and	
 drop	
 points	
 on	
 the	
 grid.	

Then	
 interpolate.	

Can	
 we	
 do	
 be*er?	

example: building the optimal surrogate

Be*er	
 solu5on:	
 pick	
 points	
 at	
 all	
 of	

the	
 cri5cal	
 points	
 for	
 the	
 unknown	

surface.	
 Then	
 interpolate.	

Need	
 to	
 use	
 an	
 op5mizer	
 capable	
 of	

reliably	
 finding	
 all	
 cri5cal	
 points.	
 	

Luckily,	
 we	
 have	
 one.	

Turning	
 points	
 not	
 shown.	

As	
 a	
 “bonus”	
 you	
 also	
 get	
 the	

points	
 from	
 each	
 func5on	

evalua5on	
 in	
 the	
 op5miza5on.	

can catastrophic failure be a good thing?

–  N. DeBardeleben LANL LA-UR-12-20261

however, catastrophic
failure should be easy
to detect by examining
model error (statistics)

can we leverage model
error to provide resilience?

one flipped bit in a FFT can
have catastrophic effects

model error in guided shock simulation

shock experiment

shock simulation

interesting regions

In shock simulations, we typically construct a model, then
after we simulate we try to determine “misfit” (i.e. model error).
We then readjust parameters, and try again.

What if we had a process to build a shock model that was guaranteed
to satisfy model error constraints everywhere requested?

What if, as a bonus, the process was resilient to catastrophic failure?

Could we also use
some combination of
model error and
asynchronous
parallelism to speed
up the calculation and
make it more robust
against error?

Ahead of each “model-error guided” model
evaluation, we run a burst of “model-error
guided” surrogate model evaluations. We try
to forecast the next coarse model evaluation
point. Also, if the surrogate performs well,
switch to the surrogate.

Could something like this work?

statistics will play a huge role at exascale

•  exascale systems should have to operate under failure

•  individual components of the system and individual bits of data
should not be trusted… however, the entire system and the data
should be trusted with statistical confidence.

–  we have to build algorithms that are robust with statistical confidence

•  in certain cases, we can measure performance with an
estimator (e.g. a model that produces a projected value):

–  failure that is governed by a normal (or at least a known) distribution
–  failure that is not catastrophic (i.e. errors do not compound)
–  when we have built and validated a statistical estimator for the system
–  when we can’t do any better

•  otherwise we need to determine best and worst case bounds
as well as the average case

–  the bounds and the average provide a true system performance measure

probability theory versus uncertainty

•  subtle: approximations make the problem “solvable”

–  however, often remove the ability to predict high-impact rare events

•  problem typically reduced to one of probability theory
–  classic probability theory by Laplace published in 1812
–  modern probability theory by Kolmogorov published in 1933
–  probability distributions are approximated as a KNOWN
–  standard deviations are used to “reintroduce” the UNKNOWN

•  how differ from rigorous calculations of risk and uncertainty?
–  probability distributions are an UNKNOWN
–  unified uncertainty theory by Owhadi published in 2013

•  example: picking a red ball from a bag of 100 colored balls
–  probability: if 10 balls are red, what’s the likelihood in picking a red ball?
–  uncertainty: if on average 10 balls are red, what’s the likelihood of picking a red

ball the next time? What’s the worst case and best case?

why is catastrophic failure hard to predict?

•  hardly anyone solves the "full problem"
–  problems are high-dimensional, nonlinear, and non-convex
–  real-world problems are usually considered “too big” to

solve: too many parameters, too complex, etc…

•  composing reduced problems with valid strong
approximations is an area of active research

–  calculations are expensive and require parallel computing
–  the majority of the effort is often in finding a "best" model

or probability distribution or prior
–  once a "best" model/distribution is found, prediction and

estimation are separate and often quick calculations
–  iterative and renormalization steps can be used when

predictions are found to conflict with problem constraints

•  typical: use a prior and fix a probability distribution
–  sampling off a fixed distribution can only predict rare

events that have been observed (to inform the prior)
–  can predict average behavior (given enough data),

however fails to predict high-impact rare events

•  standard
approximations:

–  convexity
–  if the objective is

expensive, use a
less expensive
(approximate)
surrogate

–  if data exists, use
a best-fit
surrogate to
represent the data
(throwing away
data)

–  worst: we extract
a probability
distribution from
the data,
assuming all
future data
matches the
existing
distribution

Bayesian inference, machine learning,
MCMC and other standard
techniques all use this approach.

example: seismic safety assessment

§  Failure	
 occurs	
 when	
 axial	
 strain	
 in	

any	
 truss	
 member	
 exceeds	
 the	

member	
 yield	
 strain	

§  We	
 determine	
 the	
 probability	
 of	

non-­‐elas5c	
 failure	
 with	
 respect	
 to	

the	
 unknown	
 earthquake	
 ground	

mo5on	
 the	
 structure	
 will	
 experience	

a	
 truss	
 structure	

typical	
 scenarios	
 for	
 resul5ng	

ground	
 accelera5on	

when	
 axial	

strain	
 occurs	

near	
 truss	
 	

resonance	

modes,	
 failure	

can	
 occur	

Owhadi	
 et	
 al,	
 SIAM	
 Review	
 2012	

•  Problem:	
 Can	
 we	
 cer5fy	
 the	
 seismic	
 safety	
 of	
 a	

given	
 structure	
 subjected	
 to	
 earthquake	
 ground	

mo5on,	
 where	
 only	
 the	
 maximum	
 magnitude	
 and	

focal	
 distance	
 of	
 the	
 earthquake	
 are	
 known?	

•  We	
 construct	
 all	
 possible	
 earthquake	
 scenarios	

–  Random	
 inputs	
 of	
 high-­‐dimensionality	
 (~600)	

with	
 a	
 large	
 number	
 of	
 constraints	
 (~1200)	

–  Inputs	
 are	
 coefficients	
 ci	
 in	
 the	
 transfer	

func5on,	
 and	
 amplitudes	
 Xi	
 and	
 dura5ons	
 si	
 in	

the	
 earthquake	
 source	
 func5on	

•  Ground	
 accelera5on	
 is	
 a	
 convolu5on	
 of	
 the	
 source	

and	
 transfer	
 func5ons,	
 while	
 dynamics	
 of	
 joint	

deflec5on	
 are	
 governed	
 by	

probability	
 of	
 failure	
 as	

a	
 func5on	
 of	
 maximum	

ground	
 accelera5on	

value	
 at	
 risk

assumptions have consequences

•  An admissible set of scenarios can be constructed by
considering the mean power spectrum

•  The typical approach is to repeatedly sample white noise,
then filter the samples through a given shape function to
generate samples with a "typical" power spectrum
–  amounts to a sampling from only one of the possible probability

distributions
–  results are dependent on how well the selected probability distribution

applies to all possible scenarios (e.g. are outliers important?)

•  This approach builds the "best" model based on past events,
and hopes futures can be predicted explicitly from the past.

the problem is…

•  The past is not generally a good predictor of the future

•  In general, we have two problem types:
–  "best" case is easy to approximate

–  seismic safety
–  casualty estimates

–  "average" case is easy to approximate
–  stock market futures
–  weather forecasting
–  algorithmic performance

•  Finding the remaining information is sketchy
–  bounds found by standard deviations
–  bounds found with monte carlo simulations
–  bounds cannot be approximated

value	
 at	
 risk

value	
 at	
 risk

hedge

Poor approximations built into our statistical
methods often lead to increasing confidence in incorrect results

UQ with unknown probability distributions

•  OUQ is an optimization problem to
find the rigorous bounds on system
behavior

–  all information is captured as constraints
–  constraints restrict the set of all possible

solutions (by directly constraining solution
space)

–  systems with minimal to no experimental
data or unobserved rare events that govern
system behavior

•  instead of selecting a "best" model or
distribution or prior, we can optimize
over all possible models,
distributions, or priors.

–  selecting a model or distribution is treated
as an assumption or information (i.e. a
constraint)

–  our "prior" step becomes one of quantifying
all the knowledge we have about the
problem, and then encoding that
knowledge as constraints

•  min/max on probability measure
space (not input parameter space)

•  mean-constrained optimization
balances weights and positions of
Dirac masses around a critical point

probability distribution

probability measure
(of Dirac masses)

critical point (mean constraint)

how many points are required? N+1 or less,
where N is the number or constraints.

Support Points at iteration 0

initial basis for a probability distribution…

Support Points at iteration 1000

…solver looks for extremal cases……

Support Points at iteration 3000

…collapses candidate scenarios…

Support Points at iteration 7100

…and solves for probability of failure

most likely
failure scenarios

most likely
success
scenarios

OUQ: a robust unifying UQ formulation

 •  …

–  …

•  …
– …

•  …
– …

extremes are bound
by information in the
form of constraints

formulated to handle
UQ for catastrophic
rare-events

the math is simple, but infinite dimensional

•  …
–  …
–  …

•  …
–  …
–  …
–  …
–  …
–  …
–  …
–  …

…: … …: …

 remember: using any

 implicit approximations
 destroy our ability to
 guarantee our results

enables rigorous calculation of
bounds on system behavior

note the optimal model is the
most robust (e.g. the bounds
minimally change on system
change)

the answer

You are given one pound of playdoh.
How much mass can you put above a while
keeping the seesaw balanced around m?

the question

a simple infinite dimensional problem

quantification in microstructure modeling

•  motivating questions:
–  How "good" is my model?
–  How can I best improve my model?
–  Given the uncertainty on microstructure does it

make sense to perform an expensive simulation?
–  Is there a "best" representation of the microstructure?

How can I find it?
–  Can I turn the problem of finding the best model given

computational constraints and available information
into an algorithm?

real system
QOI (quantity of interest)

model
predicted QOI

?

velocity

failure

target: UQ for shock in microstructures

strength models in shock waves

we want to estimate

Shock Experiment
Shock Simulation

we can compute

model uncertainty

statistical error

model error

optimal bound on the statistical error

failure

used for model-parameter sensitivity

•  dynamic discovery of
 regions of criticality

large-scale calculations of risk

–  …
–  …
–  …
–  …
–  …
–  …

–  …
–  …
–  …

–  …

A	
 trading	
 scenario	
 generator	

creates	
 and	
 launches	
 thousands	
 of	

simula5ons	
 on	
 millions	
 of	
 trades.	

lem:	
 schema5c	
 of	
 major	

players	
 in	
 the	
 synap5c	

reac5on	
 network	

Crystal	
 structure	
 of	
 monoclinic	

zirconia,	
 with	
 oxygen	
 in	
 red	
 and	

zirconium	
 in	
 blue.	

The	
 par5al	
 density	
 of	
 states	
 at	

295	
 K	
 calculated	
 by	
 GULP	

shows	
 Zr	
 dominates	
 the	
 lower	

energy	
 modes.	

diameters help zero-in
on regions of parameter
space where parameters
have desired impact

sensitivity in synaptic reaction networks

sensitivity of thermodynamic peak-
broadening to bond anharmonicity

sensitivity = - |F(x') - F(x)|2

 UQ for solid mechanics of
hypervelocity ballistic impact

–  …
–  …
–  …
–  …
–  …
–  …

the	
 area	
 of	
 the	
 above	
 hole	
 is	

determined	
 by	
 a	
 laser	
 probe	

hypervelocity	

ballis5cs	

launcher	
 and	

measurement	

system	
 	

an	
 impact	
 simula5on	
 is	

used	
 to	
 quickly	
 test	

materials	
 	
 response	
 	

 validation of strength models
 for hypervelocity impact

Schema5c	
 of	
 hypervelocity	
 impact	
 for	
 a	
 spherical	

steel	
 projec5le	
 fired	
 at	
 a	
 stainless	
 steel	
 plate.	
 	

A	
 Von	
 Mises	

yield	
 strength	

model	
 with	

velocity	
 =	
 100	

m/s	
 is	
 shown	
 5	
 s	

amer	
 impact.	

used for probability of system failure

a	
 truss	
 structure	

typical	
 scenarios	
 for	
 resul5ng	

ground	
 accelera5on	

when	
 axial	

strain	
 occurs	

near	
 truss	
 	

resonance	

modes,	
 failure	

can	
 occur	

value	
 at	
 risk
probability	
 of	
 failure	
 as	

a	
 func5on	
 of	
 maximum	

ground	
 accelera5on	

probability of elastoplastic failure under
strain due to ground acceleration

A	
 feasible	
 set	
 defined	
 by	
 bounds	

	
 …and	
 a	
 mean	
 constraint	
 on	
 area	

enables the formulation of better models

We keep trying to design possible “experiments” to find the information
set that certifies the system as “safe” (not failing within the given tolerance)

We can hypothesize measurements of new information (say, a new constraint on
the median of velocity, or on the angle of impact), and then optimize to see how that
new information would alter the probability of the critical event.

more questions == new objective functions

•  Can I use OUQ to find if I can use sampling statistics?

•  Can I find a suitable reduced-dimensional model?

•  Which data points are the “most impactful”?
–  after 1 year of hypervelocity impact experiments, post-analysis found that

only 2 of the nearly 50 shots impacted the probability of failure bounds
–  better: use the statistics as an guide for where to shoot next

•  Formulation of these problems as OUQ questions, under the
mystic framework, is designed to run asynchronously and to be
resilient to failure.
–  in many cases, this requires depth 5 optimization problems

when bounds are violated, look for bugs!

•  …
•  …

–  …

•  …
–  …
–  …
–  …

•  …

in an OUQ calculation of
probability of failure, the
results began violating the
calculated system bounds

subsequent OUQ analysis on
elements of the calculation
discovered a version update to
code for kriging interpolation
came with a new bug

since this error represented a
violation of our assumptions
(information) about the
problem, it led to results that
violated the “worst case”
bounds.

with interpolation bug

without interpolation bug

references

[1] http://arxiv.org/abs/1308.6306
[2] http://arxiv.org/abs/1304.6772

[3] SIAM Rev 2013 http://arxiv.org/abs/1009.0679

[4] M2AN 2013 http://arxiv.org/abs/1202.1928

[5] http://pythonhosted.org/mystic

[6] https://github.com/uqfoundation

This is not in any way a solved problem, and I believe
is just the opening gambit.

 End Presentation

